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Schur function analysis of the unitary discrete series 
representations of the non-compact symplectic group 
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t Cenvo lntemacional de Fisica, Bogold, Colombia 
t Departamento de Fisica, Univenidad de 10s Andes, BogotB, Colombia 

Received 1 July 1992 

AbslracL We develop and analyse cmain character reductions for the infiniledimensional 
unitaly discrete series representations of the non-compact symplectic group Sp(2n, B). 
The group reductions considered are Sp(Zk,B) 3 Sp(2, E) x O( k) and the more general 
Sp(Znk,B) 3 Sp(2n,B) x O(k). We use Schur function techniques IO derive succinct ' 

formulae involving cenain infinite series of Schur functions. The results are re lmni  to 
the study of many-body systems with interactions of bilinear form and to the description 
of various quantum phenomena including mllective behaviour. 

1. Introduction 

In this paper we present some character theory results of the non-compact 
group Sp(2n, R), in particular analysing the unitary discrete series irreducible 
representations (uds-irreps) for the group reductions Sp(2nk, W)  3 Sp(2n, R) x O( k) 
and, in particular, Sp(2k, W) 3 S p ( 2 ,  R) x O ( k ) .  We use the powerful Schur function 
techniques which have been widely used in the compact group case (see King 1975, 
Black er a1 1983). These have the advantage of giving rank-independent results. We 
elaborate on the work of King and Wybourne (1985), whom we follow closely in 
presenting much of the character theory of the uds-irreps. These representations of 
Sp(2n,R) in general have been encounted in other areas, in particular in the study 
of the harmonic oscillator, the hydrogen atom and the theory of nuclear collective 
motion. 

The interest is that we wish to apply these results to the many-body microscopic 
system of N electrons confined in d dimensions and to describe its collective 
behaviour (see Haase and Johnson 1992). In recent years such systems have been 
grown artificially and are known as quantum devices. The confinement in such 
quantum devices is often electrostatic in origin and the effective confining potential 
is, to a good approximation, quadratic (see Kumar et ai 1990). Model Hamiltonians 
of such quantum systems, even in the presence of a uniform magnetic field, can 
be taken to be composed of bilinear operators of the Heisenberg algebra, and 
hence the quantum behaviour is described by the non-compact symplectic group 
Sp(2Nd,W) and its unitary representations. A full discussion of the collective 
behaviour of the N-particle system in a d-dimensional space requires the various 
group-subgroup reductions of the representations of Sp(2Nd, R)  to determine and 
classify basis states of the system, and ultimately the matrix elements of the generators 
of Sp(2Nd,W) and its subgroups. In the field of nuclear physics, similar work has 
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been performed by Moshinsky, Kramer and Rowe and their respective coworkers 
(see Castatios el ai 1984, Moshmsky ef a1 1985, Kramer 1982, Rowe and. Rosensteel 
1979, Rosensteel and Rowe 1983, and references therein) focusing, in particular, on 
group chains involving Sp(2n,R) 3 U ( n ) .  Our focus is on those chains involving 
Sp(2nk,R) 3 Sp(Zn,R) x O(k). 

We separate the paper into three sections: the first outlines the partition notation 
used, the Schur function operations and Schur function series required, and gives 
briefly those compact group results we require later; the second discusses the 
two basic uds-spin irreps of Sp(2n,W) giving their various properties, the general 
compact group reduction Sp(2n,R) 2 U(n ) ,  and the Sp(2kC.W) 3 Sp(2,W) x O ( k )  
reduction of the uds-irreps; the third presents an analysis of the Sp(2nk,R) 3 
Sp(2n,R) x O(k) reduction of the uds-irreps using two group-subgroup schemes, 
one involving the Sp(2n,R) 3 U(n) reduction while the other involvcs the 
Sp(2k,R) 3 Sp(2,R) x O(k) reduction. The derivation of these results are rank- 
independent wherein lies the power of the Schur function techniques. Although 
the final analysis is incomplete in that a Schur function formula cannot be easily 
obtained, we outline an inversion technique which yields leading lowest-weight terms 
to any order required. We re-establish known results for particular cases. We are 
also in the process of evaluating computer-generated results for particular cases to 
provide some insight into simplifications. 

R W Haase and N F Johnson 

2. The reductions of the compact group 

For compact groups, irreps are denoted by partitions and their properties, such as 
branching rules and Kronecker products, are given by certain operations of Schur 
functions which describe the characters of the irreps. We briefly discuss the notation 
to be used and give a quick treatment of some compact group character results below. 
For more details see King (1975) and Black el al (1983). 

From the representation theory of finite and compact groups, every finite- 
dimensional non-equivalent irrep can be denoted by a partition (@)-an ordered 
set of positive integers p l  2 , . . 2 pli > 0. The integers p j  are called the parts of the 
partition while the weight of the partition is the sum of its parts w(p) = p l + .  . .+pb. 
The partition (,G) is called the conjugate partition of ( p )  formed by interchanging 
columns and rows of the associated Young diagram. The number of parts of ( p )  is 

We use the convention of distinguishing characters and irreps of the orthogonal 
group O(n) by square brackets [..I, those of the symplectic group Sp(2n) by angular 
brackets (..) and those of the unitary group U(n)  by curly brackets {..). For clarity, 
we shall often subscript the rank of the group, here n, after the brackets. 

For complctencss and to help introduce many of the Schur function techniques 
we require, we give the relevant compact group reductions. As we are dealing only 
with the covariant tensor irreps of U(n), the standard labelling is by a single partition 
{ p )  into, at most, n parts. The U(mn) 3 U(m) x U(n) reduction is for such irreps 
given by 

$1. 

{PIm, 1 0 E l m  x { E l ,  (1) 
E 

where the symbol o signises the Schur function operation of inner multiplication, 
known more in association with Kronecker products of symmetric group irreps. The 
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summation over partitions (c) is restricted to, at most, n parts. An example is 

W I m ,  I WI, x PI,+ t3)m x Wl,+ W I m  x WI,+ t14, x {21I,+Wlm x ~ 3 1 ,  

(2) 
where we have used the inner products (21 o 3) = (21), (21 o 21) = (3 + 21 + 13), 
and (21 o 13) = (21). The above result is valid for all m and n but if the number of 
parts of the partition exceed the rank of the group then the character is null. 

The U(n) 2 O ( n )  reduction for covariant irreps is given by 

{PIn I [CLID], = CbPI, (3) 
6 

where /denotes the Schur function operation of division, and D represents an infinite 
sum of partitions (6) whose parts Si are all even, 

D = ( 0 ) + ( 2 ) + ( 4 ) + ( 2 2 ) + ( 6 ) + ( 4 2 ) + ( 2 3 ) + . . .  . (4) 
We note that, although D is formally an infinite series, the division operation renders 
the summation Enite by restricting the terms to partitions no greater than the partition 
( p ) .  For example 

( 5 )  {32}, I [32/D], = [32/(0 + 2 + 2’11, = [32 + 3 + 21 t 11,. 

Another result we need is the character reduction for O ( m n )  3 O ( m )  x O(n) 

[PImn I C [ ( ( P / C )  0 C)/% x [C/DI, 

C = ( 0 ) - ( 2 ) + ( 3 1 ) - ( 4 1 2 ) - ( 3 2 ) + ( 4 3 1 ) + ( 5 1 ) t ~ ~ ~ .  (7) 

(6) 
< 

where C is the inverse series of D, CD = 1, with leading terms 

The summation is over aU partitions (C) into min(m,n) parts and of even (odd) 
weight if ~ ( p )  is even (odd) and no greater than w ( p ) .  This is due to (i) the 
nature of the C series where the weights are all even; (ii) the property of division 
where w ( ~ / u )  = ~ ( p )  - ~ ( v ) ;  and (iii) the property of inner multiplication which 
is always between partitions of the same weight. Unravelling the content of the 
reduction formula is best illustrated: 

[211m, 1 C [ ( ( ~ ~ / ( O - ~ ) ) O C ) / D I ~  x [c/DI,I = G [ ( ( ~ ~ - ~ ) o c ) / D I ~  x [ c / D I ~  
c < 
= [(2103)/01, x [~/DI, ,  + [(21021)/~1, x 121/~1 ,  

t W O  13 ) /~1 ,  x [i3/01, - [ ( io  WDI ,  x [ 1 / a ,  
= [21/~1, x [ ~ / D I ,  + ~3 t 21 + 1 3 ) / ~ 1 ,  x [21/~1 ,  

+ [21/Dlm x [111/01, - I1/Dlm x [1/% 
where now [3/0] = [3+ 11, [21/D] = [2l+ 11, [111/D] = [111] and [ l /D] = [l]. 
Applying these results yields the general reduction valid for any m and n 

[21], ,1[21+1],x[3+1],t[3+1t21+1t1111,x[21+1],  

+ 121 + 11, x [1111, - Ill, x PI, 

+ [21 t 11, x [llll, + [3 t (2121 t 111 + (2111, x Ill, 

1[21+ 11, x [3], + [3 + 21 + 111 + (2)l], x [21], 



1666 

where the multiplicities of [21] x [l], [l] x [21] and [l] x [l] are placed in parentheses. 
Note the cancellation of the negative term. In general this will always happen despite 
the fact that the C series contains negative terms. 

The results represented in these examples are valid for all m and n, however 
to apply these to particular values the partitions may not be standard irrep labels 
of their respective orthogonal group, that is of O(m) or O(n), and need to be 
modified accordingly. This may lead to further cancellations. A standard O(n) 
irrep character label is one in which the partition [p ]  has at most Ln/ZJ parts 
otherwise it is non-standard. If [p] is nonstandard, fil > [n/2J, then one must 
apply the O ( n )  modification rule. This rule removes a hook length of length 
h = Zfil - n, starting at the bottom of the first column of the associated Young 
diagram and removing h contiguous boxes along the boundary of the diagram. If 
the resulting diagram, denoted symbolically as [ p  - h], is a regular partition then 
[p ]  = ( - l ) ' - ' [ ( p  - h)'] where c is the column in which the removal procedure ends 
and * represents the associated irrep character. Otherwise if the resulting partition is 
irregular, it is the null character 4. If one begins with the associated character [p'] 
then [p'] = (-l)c-l[p - h]. The hook length removal procedure must be repeated 
until a standard irrep label or the null label is obtained. By way of illustration if 
[ p ]  = [3321] and h = 3,4,S, then [ p  - h] = -[33'],~$,[31*] respectively. 

In describing many of the properties of Sp(2n,R) uds-irreps in the next section, 
we shall need the following definition. We shall call a label [ K ]  of O(k) near-standard 
if k ,  + ii2 6 k for the reason that if ( K )  is non-standard then it requires only one 
application of the modification rule to arrive at a standard label. One must remove 
the hook length h = 2k, - k, which, because k l  - h = k - k l  2 kz,  is always taken 
completely from the first column (c  = 1) and always yields a regular partition so that 
we have [K] = [(K - h ) * ] .  

R W Haase and N F Johnson 

3. The unitary discrete series representations of Sp(Zn, R) 

We follow King and Wybourne (1985) in presenting much of the representation 
theory of Sp(2n,R). For the sake of brevity, we shall denote the non-compact 
symplectic group Sp(2n,R) by Sp(2n). The latter is often used for the compact 
symplectic group Sp(2n.C) n U ( n )  which is not considered here at all. There exist 
two basic uds-irreps, (s;O,) and (s;O-), of Sp(2n); both are infinite dimensional and 
non-faithful. Moreover, there exists the spin representation (s;O) which is a faithful 
unitary irrep of the double covering group, the so-called metaplectic group Mp(2n) 
of Sp(2n), and which is reducible 'into a sum of the two basic spin irreps of Sp(2n) 

(4, 1 W,), + WJn.  (8)  

There are two fundamental results associated with the basic spin irrep (s;O),. 
The first refers to its reduction as a sum of irrep characters of the maximal compact 
group U( n ), 

(s;O), I cn1/2 A4 = cn1/2 C{m}, (9) 
m 

where the summation is over all non-negative integers, 6,  { 1") denotes the one- 
dimensional determinantal representation of U(n), and {m} is a covariant tensor 
irrep of U(n). 
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The second result is that the reduction of the basic spin irrep (s;O) of Sp(2nk) 
to Sp(2n) x O(k) is 

where the summation is over all the partitions ( K) satisfying the constraints ic, < n 
and k ,  + kz  < k (Kashiwara and Verge 1978, Rowe er a1 1985). Note that the 
branching is multiplicity-free and that there is for each irrep label of Sp(2n) just 
one irrep label for O(k) and vice versa-a fact known in the nuclear physics field 
as complementarity (Moshmsky and Quesne 1970). The constraints imply that the 
summation is over those standard partitions that label covariant tensor irreps of U(n),  
and those irrep labels of O ( k )  that are near-standard since k ,  could be greater than 
k / 2  but is certainly less than k. 

It is just the two results given hy equations (9) and (10) that are needed 
to determine properties of the uds-irreps (;k(n)) of Sp(2n). For example, the 
branching rule appropriate for the reduction Sp(2n) 3 U(n) was shown to take the 
form (King and Wybourne 1985) 

( f k ( ~ ) ) ,  1 enk'' D)K}n with IC = min(k, n) (11) 

where we first note that ($k(~)),, is a unitary irrep therefore ( K )  is a near-standard 
label of O( k), and second ( K )  is called the signed sequence of ( K )  which involves 
a sum of partitions -+( Y) such that +[uIk is equivalent to [.It under the modification 
rule of O(k). As this rule removes hook lengrhs, one can see that this sum is infinite, 
being the inverse procedure of repeated appending of hook lengths. For example 

,(54)4 = (54) - (542) + (5431) - (543') - (54'1') + .  . . . (12) 

The outer multiplication ( , K ~  D)K can be thought of as being carried out in the 
group U ( K )  as implied by the subscript K .  This fact imposes certain limits on the 
partitions appearing in each of the infinite sequences D and s ( ~ ) k .  The former 
remains infinite but is restricted to partitions into at most IC parts while the latter is 
rendered finite with at most 1 + IC - k ,  terms. The reason is that each added hook 
length must begin in the first column. The above example gives ,(54)4 = (54) - (542) 
with IC = 3. More details on the signed sequence , ( K ) ~  can be found in Rowe ef af 
(1985) and King and Wybourne (1985). One further remark on this reduction is that 
the leading terms as determined by the smallest U( n) irrep can be seen to be 

( f k ( K ) ) ,  1 Enk'' ( { K } ,  + { K  2) ,  f ' ' ') (13) 

where the first term gives a U(n)-justification for the labelling of the Sp(2n) irreps. 
A second result that follows from the properties of the basic spin irreps 

but not given in King and Wybourne (1985) is the general branching rule for 
Sp(2n) 3 Sp(2) x O ( n )  which is summarized in the following: 

($(K)), 1 C ( ; n k ( m ) ) *  x [ ( ( m l C )  0 (2 D)k),/DI,. (14) 
m 

Athough more complex, there is some simplification in the evaluation of the 
expression ( ( m / C )  o ( , K ~  D)l;)n. First, as ( m )  is only a I-part partition, 
( m / C )  = (m) - (m - 2) for m 2 2, special cases (O/C) = (0), (1/C) = (1). 
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Second, . ( K ) ,  with partitions restricted to at most k parts becomes a finite sum. 
Thud, the inner products are particularly easy as for m integer (m) o (U) = (U) 
where ( v )  is any partition of weight m. Hence for given m the purpose of the inner 
product is to extract from ( s ~ b  D ) ,  those terms of weight m and m - 2. The 
terms arising from the inner products must also be standard labels of U(n) hence 
the subscript n in ( ( m / C ) o ( , K k  OD),),. Note, as the inner products are especially 
simple, we can take the part restrictions inside the inner products. As a consequence, 
with K = min(k,n), we could write 

R W Haase and N F Johnson 

( m / C )  o ( , K ~  D ) ,  = (*K' ~ ) ; t  - ( s ~ k  ~ ) ; t - ~  (15) 

where after the parentheses the superscript determines the weight restriction and the 
subscript the combined part restriction. Also, if ( K )  is a partition of even (odd) 
weight, the weights of the partitions appearing in ( , K ~  s D) are also even (odd) and 
therefore m must be accordingly an even (odd) integer. Letting W ( K )  = w, the 
leading terms in the reduction as determined by the smallest-labelled Sp(2) irreps 
can be seen to be 

( tk(K)) , l ( fnk(w))i  X [ K / D I ,  t ( i n k ( w t 2 ) ) ,  X [ ( K * ~ - K ) K / D I ~  t... (16) 

with the proviso that if ( K ' )  is the second term in ( * K ~ )  then W ( K ' ) ) W  t 2. If 
w ( K ' )  = w t 2 then ( K ' )  must be subtracted from the product ( K  2). Note that 
the first term gives perhaps an alternative O(n)-justification for the labelling of the 
Sp(2n) irreps. 

To exemplify the reduction formula given by equation (14) or (16) we present 
the leading smallest-weight terms for the reduction of the Sp(6) irrep (2(32)), to 
Sp(2) x O(3). We need the outer product sequence for (32), ,(32)$ = (32) - (32*) 
with the D series restricted to, at most, three parts, yielding 

.(32)! D, = (32) t (52) t (43) + (421) t (3'1) t ... . (17) 

The Schur function division by the D series then gives 

(2(32))3 J. (6(5))1 X [3 t 2' t 113 t (6(7))1 x [5 t (2)4' t (3)3 t (3)2 t 1 t 0'13 t. ' .  
(18) 

where we have used O(3) modifications. 
As the reduction Sp(2n) 3 Sp(2) x O(n) has not been previously analysed, it 

is instructive to derive equation (14) in detail as a example of the Schur function 
technique. Starting with the metaplectic irrep ( s ; O ) , ~ ,  we employ two different chains 
of groups: 

(A) Sp(2nk,R) 3 Sp(2n,R) x O(k) 3 Sp(2,R) x O(n) x O ( k )  

(S%k 1 C(2+4), x ["Ik 
li 

K A P  

which essentially defines the problem, that of finding m(n,Ap), with ( K )  and ( A )  
near-standard in O(k) and 0 ( 1 )  respectively but ( p )  standard in O(n); and 
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(B) Sp(2nk,R) 3 Sp(2,R) x O ( n k )  3 Sp(2,Iw) x O(n) x O(k) 

(s ;O)nk 1 x ( + n k ( l ) ) l  x I l I n k  
I 

1 C(;nml x [((E/C) O ( C ) k ) n / D I n  x [ClDIk 

= C(4.Wl x [(([/Cl . ( E -  D ) k ) n / D I n  x [ E l k  

I (  

I €  

where 1 is a non-negative integer and (C), (0 are partitions of weight determined by 
terms in (1/C) and restricted to k parts. Comparing the two final results from (A) 
and (B) yields ( A )  = ( E ) ,  ( E )  c, ( K ) ~ ,  and for a given ( K )  and (1) 

E ~ ( K , ~ P ) ( P ) ~  = ( ( ( l / C ) o ( , n k  D)kL/Dln. (19) 
I” 

On substituting this into (A) we obtain the general reduction of the uds-irrep under 
Sp(2n) 3 Sp(2) x O ( n )  in a very compact form as given in equation (14). 

4. The Schur function analysis of the S p ( 2 n k )  3 Sp(2n)  x O ( k )  reduction 

We analyse in this section the more general reduction Sp(2nk) 3 Sp(2n) x O(k) 
using the above Schur function techniques. The analysis of this reduction is 
incomplete in that a succinct formula cannot be obtained due to the complex 
dependence on the values n, k and the interdependence of the Schur function 
operations However, a procedure given by King and Wybourne (1985) is used by 
which a stepby-step operation extracts the leading terms in lowest-weight partitions 
to any order required. This is based on the fact that the uds-irreps are labelled by 
the highest weight of the lowest U( n) constitutent irrep as can be seen in equation 

Let us consider the reduction of the irrep ( $ m ( ~ ) ) ~ ~  of Sp(2nk) under the two 
chains of groups, (A) and (B), given below. We note that, as we are dealing only with 
the unitary irreps, decompositions to symplectic subgroups will involve only unitary 
irreps: 

(A) Sp(2nk) 3 Sp(2n) x O(k) 3 U(n) x O ( k ) .  Using equation (11) we have 

(13). 

( M P L k  ICm(P($”)), x [ K l k  
Y S  

l C m ( P , v K ) c n n k l z  I(.vmk D ) N l n  x [nlk 
Y k  

where ( K )  is a near-standard label of O(k), hence ,GI f E2 < k, (v) is a standard 
label of Sp(2n) with Cl < n and 17, + f i z  < mk, and N = min(mk, n). 

(B) Sp(2nk) 3 U(&) 3 U ( n )  x U(k) 3 U(n) x O(k). Using equations (ll), 
(1) and (3), we have 

( f m ( ~ ) ) , k  I ~,k”’ {LP”’ D),wlnk 
I C(cnmk/2 x C k m n / * )  DIM 0 ( C ) k I n  x I C l k )  

c 
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where A4 = min(m,nIC). There are several remarks to make here. The summations 
over (C) and ( E )  involve partitions into at most IC parts. The terms in the outer 
product ( 8 p m  D ) M  must be restricted to at most M = min(m,nk)  parts, and 
hence b ( p ) m  and D can be restricted to partitions into at most M parts. The inner 
product selects from (C) and ( 5  D )  partitions with the same weight as those in the 
expression (,p"o D) .  Moreaver, in the inner product itself, ( s p m o  D),,, o ( < o D ) ~ ,  
only terms of at most n parts are retained. Note that the k and n part restrictions 
cannot be taken inside the inner product as these products are quite non-trivial. 

Comparing the final results of (A) and (B), we have for a given ( p )  and ( K )  

Cmb, VKI{( .@ ~ 1 ~ 1 -  = {(&" W,tf o ( p k  D)kIn (20) 
Y 

where the inner product implies that Iw (p )  - U(.)[ is always an even integer. 
Multiplying by e , m k / Z  yields on the left-hand side a sum of uds-irrep characters 
of Sp(2n) 

C m ( P , V d ( + " ) ) ,  1 %mk'2  {(.$Pm D)M O ( P k  4 k l n  (21) 
v 

expanded as a sum of U( n )  irrep characters. The problem now is to identify on the 
right-hand side of this equation each signed sequence (,umk D),,, and hence (U). 
One can use the property of inner multiplication 

to rearrange the right-hand side to get 

{(*Pm DIM 0 ( . I C k  D)kln = E N s K k )  0 ( L P "  D ) M / P ) )  ( O O P ) ) ,  (23) 
P 

where the sum is over all partitions ( p )  which are of even weight. This equation 
is not quite in the required form of equation (11) that it can be inverted. In 
some special cases the inversion is possible but, in general, the identification is 
not easy to show algebraically due to the complexity of the expression. However, 
for a specific case ( i m ( p ) ) n k ,  one can tediously arrive at a leading lowest-weight 
expansion by commencing with lowest-weight partitions ( K ) ,  expanding the right- 
hand side expression of equation (20) in leading lowest-weight terms for each ( K ) ,  

and recursively identifying the signed sequences of the partition (U) by identifying the 
lowest-weight partition and then subtracting its signed sequence from the expression, 
thus leaving the next lowest-weight term. In this way one can resolve the identification 
and invert equation (21). This leading lowest-weight expansion can be extended by 
including more partitions ( K ) .  
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As a check though of the validity of this result we evaluate the reduction of the 

(1) ( $ m ( p ) )  = (i(0)) giving M = 1, and ($(O)' D), = D, which contains 
basic spin irreps of Sp(2nk): 

even 1-part partitions (that is, all even integers), hence with K = min(k, n) 

{(so1 D)I ( s K k  D)kln = {(DI) O ( * K c k  D)k), 
= { ( , K k  0 D ) y } ,  = { ( , K k  D ) T ) ,  

where the inner product restricts . ( K ) ~  and hence ( K )  to partitions of even weight 
The last result is in the appropriate form that, when multiplied by E , ~ / ~ ,  it gives the 
unitary character ( ; k ( t ~ ) ) ~  of Sp(2n) when reduced to U(%). Therefore we arrive 
at the result 

( m n k  1 ( $ ( K ) ) ,  x [KIA- (24) 
&even 

summing over even-weight partitions with the constraint 

only odd 1-part partitions (that is all odd integers), hence with IC = min(k, n) 

< n and kl + kz < k. 
(2) ( + m ( p ) )  = (f(1)) giving M = 1 and ( e ( l ) l*D) l  = ( 1 0 0 ) ~  which contains 

t ( J 1  011 0 (Pk D)kIn = I(1 D)l 0 (Pk D ) k I n  
= { ( s ~ k  D)idd}, = { ( * n k  D ) Z d ] ,  

where the inner product restricts , ( K ) &  and hence ( K )  to partitions of odd weight. 
The last result when multiplied by c n k l 2  gives the unitary character (+k(~)), of 
Sp(2n) when reduced to U(n). Therefore we arrive at the result 

( f ( l ) ) , k  I E(@ x [nlk (25) 
m d d  

summing over odd-weight partitions (n) with the constraint k ,  < n and kl + k2  4 k. 
It is instructive to analyse the reduction Sp(2nk) 3 Sp(2n) x O ( k )  employing 

different chains of groups other than those involving the unitary subgroups. Having 
obtained the Sp(2n) 2 Sp(2) x O ( n )  result in the previous section we can go further 
by repeating the process for the general uds-irrep ( i m ( p ) ) :  

(A) Sp(2nk) 3 Sp(2n) x O ( k )  3 Sp(2) x O(n) x O(k) 

&(P)),k I C m ( P , v n ) ( i m ~ ( v ) ) ,  x [Klk 
"6 

1 ~ m ( ! 4 4 ( i m n W 1  x I((~IC)o(,~mk*~)mk)nl~ln x [xi]); 
Y X  

(B) Sp(2nk) 3 Sp(2) x O ( n k )  3 Sp(2) x O(n) x O ( k )  

( + ( l l ) ) , k  1 C(+W)l x [((L/c)0LPm* D)m)nk/D1nk 
I 

1 C($wl))l x [ ( ( ( ( v c ) o ( s P m -  ~ ) m ) n k ) O ( C ) k ) / D l n  x [ C I D I k  

I C ( f m n k ( W ,  x [ ( ( ( ( I / C ) o ( , l L m . D ) , ) , k ) O ( ~  D ) , ) l D I ,  x E l k .  

IC 

e 
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For fixed 1 and (K) we have on comparing the final result of (A) and (B) 

R W Haase and N F Johnson 

C m ( P , V M w )  o ( , V m k  D),k),/DI, ” 
= [ ( ( ( ( l / C )  0 D)m)nk) 0 D)k)/DIn. (26) 

Inner product restrictions imply that terms in ( l / C )  and (apm D) must have the 
same weight, as should those in ( ( ( l / C )  D ) ) / C )  and ( , K ~  D). One can 
rearrange the right hand side so that the inner product with ( l / C )  is outside all the 
parentheses and performed last. As mentioned earlier, this is because of the simple 
nature of this type of inner product so that we have 

This relation includes the identityobtained in equation (20) and provides a consistency 
check of the Schur function analysis of the Sp(2n.k) 3 Sp(2n) x O(k) reduction. 

5. Conclusions 

The results described here demonstrate the usefulness of the Schur function 
techniques in studying the reduction properties of the unitary discrete series irreps 
of the non-compact symplectic group Sp(2n). We have obtained a succinct 
formula for the reduction Sp(2k) 3 Sp(2) x O(k)  and analysed the more complex 
Sp(2nk) 3 Sp(2n, R) x O ( k )  reduction In the latter, we have difficulties in obtaining 
a succinct Schur function formula. However, we have outlined a procedure by which 
the leading terms can be extracted to any order. We are evaluating computer- 
generated results of particular cases to provide some insight into simplifications, 
particularly in the more difficult Sp(2nk) reduction. The application of this work to 
quantum devices is currently in progress and will be discussed elsewhere (Haase and 
Johnson 1992). 
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